# Simple linear regression 

MATH 5398
Department of mathematics, UTA

## Set-up

* Pairs of observations: $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$.
- Y-variable
* Dependent or response variable
* X-variable
* Explanatory or predictor variable
* Its value can sometimes be chosen by a researcher.
* The regression of a random variable $Y$ on a random variable $X$ is $E(Y \mid X=x)=g(x)$, which can be any function.
*The regression is linear if
$E(Y \mid X=x)=\beta_{0}+\beta_{1} x$
* $\beta_{0}$ (intercept) and $\beta_{1}$ (slope): unknown regression coefficients
* A line of best fit is chosen by minimizing the residual sum of square (RSS).


$$
\begin{aligned}
& \operatorname{RSS}=\sum_{i=1}^{n} \hat{e}_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2} \\
& \left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\underset{b_{0}, b_{1}}{\arg \min } \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
\end{aligned}
$$

* Taking partial derivatives, and we obtain the normal equations.

$$
\begin{array}{ll}
\frac{\partial \mathrm{RSS}}{\partial b_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)=0 & \sum_{i=1}^{n} y_{i}=b_{0} n+b_{1} \sum_{i=1}^{n} x_{i} \\
\frac{\partial \mathrm{RSS}}{\partial b_{1}}=-2 \sum_{i=1}^{n} x_{i}\left(y_{i}-b_{0}-b_{1} x_{i}\right)=0 & \sum_{i=1}^{n} x_{i} y_{i}=b_{0} \sum_{i=1}^{n} x_{i}+b_{1} \sum_{i=1}^{n} x_{i}^{2} .
\end{array}
$$

* Solving the normal equations gives the least square (LS) estimates:

$$
\begin{gathered}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \overline{x y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{S X Y}{S X X}
\end{gathered}
$$

* LS estimates can be written using the sample correlation coefficient

$$
\begin{gathered}
r_{X Y}=\frac{\frac{1}{n-1} S X Y}{S D_{X} S D_{Y}}=\frac{S X Y}{\sqrt{S X X \cdot S Y Y}} \\
S D_{X}=\frac{1}{n-1} \sqrt{S X X} ; S D_{Y}=\frac{1}{n-1} \sqrt{S Y Y} \\
\hat{\beta}_{1}=\frac{S X Y}{S X X}=r_{X Y} \frac{S D_{Y}}{S D_{X}}
\end{gathered}
$$

Table 2.1 Production data (production.txt)

| Case | Run time | Run size | Case | Run time | Run size |
| :---: | :--- | :--- | :--- | :--- | :---: |
| 1 | 195 | 175 | 11 | 220 | 337 |
| 2 | 215 | 189 | 12 | 168 | 58 |
| 3 | 243 | 344 | 13 | 207 | 146 |
| 4 | 162 | 88 | 14 | 225 | 277 |
| 5 | 185 | 114 | 15 | 169 | 123 |
| 6 | 231 | 338 | 16 | 215 | 227 |
| 7 | 234 | 271 | 17 | 147 | 63 |
| 8 | 166 | 173 | 18 | 230 | 337 |
| 9 | 253 | 284 | 19 | 208 | 146 |
| 10 | 196 | 277 | 20 | 172 | 68 |



## Estimating variance

* Linear regression model $\quad Y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}$
* The last term is random error (mean 0 and variance $\sigma^{2}$ )

$$
e_{i}=Y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)=Y_{i}-\text { unknown regression line at } x_{\mathrm{i}} \text {. }
$$

Residual $\hat{e}_{i}=Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)=Y_{i}-$ estimated regression line at $x_{i}$.

* The sum of residuals is zero. Why?
* The unbiased estimate of $\sigma^{2}: \quad s^{2}=\frac{\text { RSS }}{n-2}=\frac{1}{n-2} \sum_{i=1}^{n} \hat{e}_{i}^{2}$
* Divisor ( $n-2$ ) is related to the sample size and the number of coefficients estimated.


## Simple linear regression concept



## Association/Correlation vs Causation

* Causal interpretation: The statement "X causes Y" means that changing the value of $X$ will change the distribution of $Y$.
* When $X$ causes $Y, X$ and $Y$ will be associated but the reverse is not true.
* Association interpretation: change in the value of $X$ is associated with changes in the value of $Y$
* Association does not necessarily imply causation.
* If the data are from a randomized study, then the causal interpretation is correct.
\% If the data are from a observational study, then the causal interpretation is NOT correct.


# Interpretation of LS estimates 

Interpret the estimate, $b_{0}$, only if there are data near zero and setting the explanatory variable to zero makes scientific sense. The meaning of $b_{0}$ is the estimate of the mean outcome when $x=0$, and should always be stated in terms of the actual variables of the study. The pvalue for the intercept should be interpreted (with respect to retaining or rejecting $H_{0}: \beta_{0}=0$ ) only if both the equality and the inequality of the mean outcome to zero when the explanatory variable is zero are scientifically plausible.

The interpretation of $b_{1}$ is the change (increase or decrease depending on the sign) in the average outcome when the explanatory variable increases by one unit. This should always be stated in terms of the actual variables of the study. Retention of the null hypothesis $H_{0}: \beta_{1}=$ 0 indicates no evidence that a change in $x$ is associated with (or causes for a randomized experiment) a change in $y$. Rejection indicates that changes in $x$ cause changes in $y$ (assuming a randomized experiment).

## Simple linear regression assumptions

1. Unbiasedness,
linearity
2. Independent errors
3. Constant variance (homoscedasticity)
4. Gaussian errors
5. $Y$ is related to $x$ by the simple linear regression model $Y_{i}=\beta_{0}+\beta_{1} x_{i}+e_{i}(i=1, \ldots, n)$, i.e., $\mathrm{E}\left(Y \mid X=x_{i}\right)=\beta_{0}+\beta_{1} x_{i}$
6. The errors $e_{1}, e_{2}, \ldots, e_{n}$ are independent of each other
7. The errors $e_{1}, e_{2}, \ldots, e_{n}$ have a common variance $\sigma^{2}$
8. The errors are normally distributed with a mean of 0 and variance $\sigma^{2}$, that is, $e \mid X \sim N\left(0, \sigma^{2}\right)$
*We should check if these four assumptions hold to make inferences on the linear regression model.

* We can assume X's are non-random.


## Distribution of the slope

$$
\begin{gathered}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}-\bar{y} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i} \\
\hat{\beta}_{1}=\sum_{i=1}^{n} c_{i} y_{i} \text { where } c_{i}=\frac{x_{i}-\bar{x}}{S X X}
\end{gathered}
$$

- LS estimates are unbiased

$$
\begin{aligned}
& E\left(\hat{\beta}_{1} \mid X\right)=\sum_{i}^{n} c_{i} E\left(y_{i} \mid X\right)=\sum_{i}^{n} c_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)=\beta_{1} \sum_{i}^{n} c_{i} x_{i}=\beta_{1} \\
& \operatorname{Var}\left(\hat{\beta}_{1} \mid X\right)=\sum_{i}^{n} c_{i}^{2} \operatorname{Var}\left(y_{i} \mid X\right)=\sigma^{2} \sum_{i}^{n} c_{i}^{2}=\frac{\sigma^{2}}{S X X}
\end{aligned}
$$

* It can be shown that

$$
\hat{\beta}_{1} \left\lvert\, X \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S X X}\right)\right.
$$

- If a,b,c, d are constants and X and Y are random variables, then $\operatorname{Cov}(a X+b, c Y+d)=a c \operatorname{Cov}(X, Y)$

$$
\begin{aligned}
& \operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1} \mid X\right) \\
& =\operatorname{Cov}\left(\beta_{0}+\beta_{1} \bar{x}+\bar{e}, \sum_{i}^{n} c_{i}\left(\beta_{0}+\beta_{1} x_{i}+e_{i}\right) \mid X\right) \\
& =\operatorname{Cov}\left(\frac{1}{n} \sum_{i}^{n} e_{i}, \sum_{i}^{n} c_{i} e_{i} \mid X\right) \\
& =\frac{1}{n} \sum_{i}^{n} \sum_{j}^{n} c_{i} \cdot \operatorname{Cov}\left(e_{i}, e_{j} \mid X\right)
\end{aligned}
$$

*By the assumptions, errors are independent

$$
\operatorname{Cov}\left(e_{i}, e_{j} \mid X\right)=\left\{\begin{array}{cl}
\sigma^{2} & i=j \\
0 & i \neq j
\end{array}\right.
$$

* Mean of $y$ and LS estimate of the slope is uncorrelated.

$$
\operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1} \mid X\right)=\frac{\sum_{i}^{n}\left(x_{i}-\bar{x}\right)}{n \cdot S X X} \sigma^{2}
$$

## Distribution of the intercept

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

* LS estimates are unbiased

$$
\begin{aligned}
& E\left(\hat{\beta}_{0} \mid X\right)=E(\bar{y} \mid X)-E\left(\hat{\beta}_{1} \mid X\right) \bar{x}=E\left(\beta_{0}+\beta_{1} \bar{x}+\bar{e} \mid X\right)-\beta_{1} \bar{x}=\beta_{0} \\
& \operatorname{Var}\left(\hat{\beta}_{0} \mid X\right)=\operatorname{Var}\left(\bar{y}-\hat{\beta}_{1} \bar{x} \mid X\right)=\frac{\sigma^{2}}{n}+\frac{\bar{x}^{2} \sigma^{2}}{S X X}
\end{aligned}
$$

* It can be shown that

$$
\hat{\beta}_{0} \left\lvert\, X \sim N\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}\right)\right)\right.
$$

* Covariance between LS estimates

$$
\begin{aligned}
& \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1} \mid X\right)=\operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1} \mid X\right)-\bar{x} \operatorname{Cov}\left(\hat{\beta}_{1}, \hat{\beta}_{1} \mid X\right) \\
& =0-\overline{\operatorname{Var}}\left(\hat{\beta}_{1}\right) \\
& =\frac{-\bar{x}}{S X X} \sigma^{2}
\end{aligned}
$$

* The variances and covariance for the LS estimators all depend on the unknown $\sigma^{2}$. One needs to estimate this if we want to compute standard errors.
* The variances of LS estimates decrease as the distribution of $X$ becomes more spread out.
* Thus, in a designed experiment greater precision is achieved using a wider range of $X$ values.


# Inference about the slope 

$$
\begin{gathered}
\hat{\beta}_{1} \left\lvert\, X \sim N\left(\beta_{1}, \frac{\sigma^{2}}{S X X}\right)\right. \\
Z=\frac{\hat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{S X X}} \sim N(0,1) \\
T=\frac{\hat{\beta}_{1}-\beta_{1}}{S / \sqrt{S X X}}=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \quad \square T=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2}
\end{gathered}
$$

degrees of freedom $=$ sample size - number of mean parameters estimated.

## Confidence interval of slope

$$
T=\frac{\hat{\beta}_{1}-\beta_{1}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2}
$$

(1-a) $\times 100 \%$ confidence interval for slope

$$
\left(\hat{\beta}_{1}-t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{1}\right)\right)
$$

* Example

|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 149.74770 | 8.32815 | 17.98 | $6.00 \mathrm{e}-13$ | *** | Table of t-distribution |
| RunSize | 0.25924 | 0.03714 | 6.98 | $1.61 \mathrm{e}-06$ | *** | able of t-distribution |

Residual standard error: 16.25 on 18 degrees of freedom Multiple R-Squared: 0.7302, Adjusted R-squared: 0.7152
F-statistic: 48.72 on 1 and $18 \mathrm{DF}, \mathrm{p}$-value: $1.615 \mathrm{e}-06$

## Testing hypothesis on slope

$$
H_{0}: \beta_{1}=\beta_{1}^{0} \quad \square=\frac{\hat{\beta}_{1}-\beta_{1}^{0}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2} \text { when } H_{0} \text { is true. }
$$

* Consider testing hypotheses

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \text { vs } H_{A}: \beta_{1} \neq 0 \\
T=\frac{\hat{\beta}_{1}}{\operatorname{se}\left(\beta_{1}\right)} \sim t_{n-2} \text { when } H_{0} \text { is true. }
\end{gathered}
$$

* At significance level a, reject the null if

$$
|T|>t(\alpha / 2, n-2) \quad \Longleftrightarrow \mathrm{p} \text {-value }=2 \cdot P\left(t_{n-2}>|T|\right)<\alpha
$$

*What if you fail to reject the null?

* Example: production data


## Inferences about the intercept

$$
\begin{gathered}
\hat{\beta}_{0} \left\lvert\, X \sim N\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}\right)\right)\right. \\
Z=\frac{\hat{\beta}_{0}-\beta_{0}}{\sigma \sqrt{1 / n+\bar{x}^{2} / S X X}} \sim N(0,1) \quad \square=\frac{\hat{\beta}_{0}-\beta_{0}}{S \sqrt{1 / n+\bar{x}^{2} / S X X}}=\frac{\hat{\beta}_{0}-\beta_{0}}{\operatorname{se}\left(\hat{\beta}_{0}\right)} \sim t_{n-2}
\end{gathered}
$$

: (1-a) $\times 100 \%$ confidence interval for slope

$$
\left(\hat{\beta}_{0}-t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{0}\right), \hat{\beta}_{0}+t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{0}\right)\right)
$$

* Example: production data


## Inferences about the Intercept

$$
H_{0}: \beta_{0}=\beta_{0}^{0} \quad \square T=\frac{\hat{\beta}_{1}-\beta_{1}^{0}}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2} \text { when } H_{0} \text { is true. }
$$

* Consider testing hypotheses

$$
\begin{gathered}
H_{0}: \beta_{0}=0 \text { vs } H_{A}: \beta_{0} \neq 0 \\
T=\frac{\hat{\beta}_{0}}{\operatorname{se}\left(\beta_{0}\right)} \sim t_{n-2} \text { when } H_{0} \text { is true. }
\end{gathered}
$$

* Example: production data


# Distribution of the population regression line 

* Let $\mathrm{x}^{*}$ denote a certain X -value. The population regression line is $E\left(Y \mid X=x^{*}\right)=\beta_{0}+\beta_{1} x^{*}$
* The estimator of this unknown conditional expectation is

$$
\begin{gathered}
\hat{y}^{*}=\hat{\beta}_{0}+\hat{\beta}_{1} x^{*} \\
E\left(\hat{y}^{*} \mid X=x^{*}\right)=E\left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*} \mid X=x^{*}\right)=\beta_{0}+\beta_{1} x^{*} \\
\operatorname{Var}\left(\hat{y}^{*} \mid X=x^{*}\right)=\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x^{*} \mid X=x^{*}\right)=\frac{\sigma^{2}}{n}+\frac{\sigma^{2}\left(x^{*}-\bar{x}\right)^{2}}{S X X}
\end{gathered}
$$

* It can be shown that

$$
\hat{y}^{*}=\hat{y} \left\lvert\, X=x^{*} \sim N\left(\beta_{0}+\beta_{1} x^{*}, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)\right)\right.
$$

## Confidence interval for the population regression line

$$
\hat{y}^{*}=\hat{y} \left\lvert\, X=x^{*} \sim N\left(\beta_{0}+\beta_{1} x^{*}, \sigma^{2}\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)\right)\right.
$$

$$
Z=\frac{\hat{y}^{*}-\left(\beta_{0}+\beta_{1} x^{*}\right)}{\sigma \sqrt{\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)}} \sim N(0,1) \quad T=\frac{\hat{y}^{*}-\left(\beta_{0}+\beta_{1} x^{*}\right)}{S \sqrt{\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)}} \sim t_{n-2}
$$

* A 100(1-a)\% confidence interval for the population regression line (mean response) at $X=$ $x^{*}$

$$
\hat{y}^{*} \pm t(\alpha / 2, n-2) S \sqrt{\left(\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)}
$$

## Estimation vs Prediction

* Estimation: to guess a function of parameters (nonrandom quantities)
* Prediction: to guess a function of actual data points (random quantities)
* Confidence interval: interval estimation of a function of parameters
* Prediction interval: interval predictions of a function of the actual data points


## Distribution of predicted value of $Y$

$$
\left.\begin{array}{c}
Y^{*}=\beta_{0}+\beta_{1} x^{*}+e^{*} \\
\mathrm{E}\left(Y^{*}-\hat{y}^{*}\right)=\mathrm{E}\left(Y-\hat{y} \mid X=x^{*}\right) \\
=\mathrm{E}\left(Y \mid X=x^{*}\right)-\mathrm{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x \mid X=x^{*}\right) \\
=0
\end{array} \quad \begin{array}{rl}
\operatorname{Var}\left(Y^{*}-\hat{y}^{*}\right) & =\operatorname{Var}\left(Y-\hat{y} \mid X=x^{*}\right) \\
& =\operatorname{Var}\left(Y \mid X=x^{*}\right)+\operatorname{Var}\left(\hat{y} \mid X=x^{*}\right)-2 \operatorname{Cov}\left(Y, \hat{y} \mid X=x^{*}\right) \\
& =\sigma^{2}+\sigma^{2}\left[\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right]-0 \\
Y^{*}-\hat{y}^{*} \sim N\left(0, \sigma^{2}\left[1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right]\right)
\end{array} \quad T=\frac{Y^{*}-\hat{y}^{*}}{S \sqrt{\left(1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)}} \sim t_{n-2}\right)
$$ plus the random fluctuation in $\mathrm{e}_{\mathrm{i}}$

## 

* A 100(1-a)\% prediction interval for $Y^{*}$, the value of $Y$ at $X=x^{*}$

$$
\hat{y}^{*} \pm t(\alpha / 2, n-2) S \sqrt{\left(1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{S X X}\right)}
$$

* The prediction interval is wider than the confidence interval because the uncertainty of prediction is the uncertainty of LS estimates plus the uncertainty of the random error.

The two intervals have the same center.

* The width of these intervals decreases if
* $x^{*}$ gets close to the mean of $X$
* n or a increases
* RSS decreases


## Analysis of variance (ANOVA) <br> $$
y_{i}-\bar{y}=\left(y_{i}-\hat{y}_{i}\right)+\left(\hat{y}_{i}-\bar{y}\right)
$$


normal equations
$\sum_{i}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i}^{n}\left(y_{i}-\hat{y}\right)^{2}$

SST $=$ SSreg + RSS
Total sample $=$ Variability explained by + Unexplained (or error) variability the model variability

$$
\operatorname{SST}=S Y Y=\sum_{i}^{n}\left(y_{i}-\bar{y}\right)^{2} \quad \text { SSreg }=\sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2} \quad \text { RSS }=\sum_{i}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

| Source of variation | Degrees of freedom (df) | Sum of squares (SS) | Mean square (MS) | F |
| :---: | :---: | :---: | :---: | :---: |
| Regression | 1 | SSreg | SSreg/1 | $F=\frac{\mathrm{SSreg} / 1}{\operatorname{RSS} /(n-2)}$ |
| Residual | $n-2$ | RSS | $\operatorname{RSS} /(n-2)$ |  |
| Total | $n-1$ | SST |  |  |

* Consider t-statistic for testing

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \text { against } H_{A}: \beta_{1} \neq 0 \\
T=\frac{\hat{\beta}_{1}-0}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2} \quad \square \quad F=\frac{\mathrm{SSreg} / 1}{\mathrm{RSS} /(n-2)} \sim \mathrm{F}_{1, n-2}
\end{gathered}
$$

Goodness-of-fit: Coefficient of determination $\left(R^{2}\right)$

* The proportion of the total sample variability in the Y's explained by the regression model

$$
\mathrm{R}^{2}=\text { squared sample correlation coefficient of } y \text { and } \hat{y}
$$

* $\quad R^{2}=\frac{\mathrm{SSreg}}{\mathrm{SST}}=1-\frac{\mathrm{RSS}}{\mathrm{SST}}$

$$
R^{2}=r_{X Y}^{2}=\frac{\left(\sum_{i}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\bar{y}_{i}\right)\right)^{2}}{\sum_{i}^{n}\left(y_{i}-\bar{y}\right)^{2} \sum_{i}^{n}\left(\hat{y}_{i}-\bar{y}_{i}\right)^{2}}
$$

It is left as an exercise to show that

$$
R S S=\sum\left\{\left(y_{i}-\bar{y}\right)-\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right\}^{2}=S Y Y-\hat{\beta}_{1}^{2} S X X
$$

- Example:

```
Analysis of Variance Table
Response: RunTime
\begin{tabular}{lrrrrrr} 
& Df & Sum Sq & Mean Sq & F value & Pr \((>F)\) & \\
RunSize & 1 & 12868.4 & 12868.4 & 48.717 & \(1.615 e-06\) & \(* *\) \\
Residuals & 18 & 4754.6 & 264.1 & & &
\end{tabular}
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
```

* Calculate SST and its DF
* Calculate R²
* Verify F=T2


## Dummy variable regression

* So far, we have considered a quantitative predictor.
* Now Consider a predictor is categorical with two values (e.g., gender)

Table 2.2 Change-over time data (changeover_times.txt)

| Method | $Y$, Change-over time | $X$, New |
| :--- | :--- | :--- |
| Existing | 19 | 0 |
| Existing | 24 | 0 |
| Existing | 39 | 0 |
| - | - | - |
| New | 14 | 1 |
| New | 40 | 1 |
| New | 35 | 1 |




* (Change-over time data) A large food processing center that needs to be able to switch from one type of package to another quickly to react to changes in order patterns.


## One-sided alternative

Coefficients:


Consider testing $H_{0}: \beta_{1}=0$ against $H_{A}: \beta_{1}<0$

$$
T=\frac{\hat{\beta}_{1}-0}{\operatorname{se}\left(\hat{\beta}_{1}\right)} \sim t_{n-2} \text { when } H_{0} \text { is true. }
$$

* Reject $H_{0}$ at significance level a if -2.254<-t(a, n-2)

$$
p-\text { value }=P\left(T<-2.254 \text { when } H_{0} \text { is true }\right)=\frac{0.026}{2}=0.013
$$

* Mean change-over time of the new method

$$
17.8611+(-3.1736) \times 1=14.6875=14.7 \text { minutes }
$$

* Mean change-over time of the existing method

$$
17.8611+(-3.1736) \times 0=17.8611=17.9 \text { minutes }
$$

* A 95\% confidence interval for the reduction in mean change-over time due to the new method

$$
\left(\hat{\beta}_{1}-t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{l}\right), \hat{\beta}_{l}+t(\alpha / 2, n-2) \operatorname{se}\left(\hat{\beta}_{l}\right)\right)
$$

