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Set-up
❖ Pairs of observations: (xi,yi) for i =1,…,n. 

❖ Y-variable 

❖ Dependent or response variable 

❖  X-variable 

❖ Explanatory or predictor variable 

❖ Its value can sometimes be chosen by a researcher. 

❖ The regression of a random variable Y on a random variable X is 
E(Y|X=x) = g(x), which can be any function.



❖ The regression is linear if 
E(Y|X=x)=β0+β1x 

❖ β0 (intercept) and β1 (slope): 
unknown regression 
coefficients 

❖ A line of best fit is chosen 
by minimizing the residual 
sum of square (RSS). 
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 These last two equations are called the  normal equations . Solving these equations 
for  b  0  and  b  1  gives the so-called  least squares estimates  of the intercept
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ê4

ê5
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  Figure 2.2    A scatter plot of data with a line of best fit and the residuals identified       

(β̂0, β̂1) = argmin
b0 , b1

(yi − b0 − b1xi )
2

i=1

n∑
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ê3

ê4
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❖ Taking partial derivatives, and we obtain the normal 
equations.  

❖ Solving the normal equations gives the least square 
(LS) estimates:
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ê1

ê2
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  Regression Output from R  

The least squares estimates for the production data were calculated using R, giving 
the following results:

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 149.74770 8.32815 17.98 6.00e-13 ***   
 RunSize 0.25924 0.03714 6.98 1.61e-06 ***   
 ---   
 Signif. codes:0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        

 Residual standard error: 16.25 on 18 degrees of freedom   
 Multiple R-Squared: 0.7302, Adjusted R-squared: 0.7152   
 F-statistic: 48.72 on 1 and 18 DF, p-value: 1.615e-06   

  The least squares line of best fit for the production data  

 Figure  2.3  shows a scatter plot of the production data with the least squares line of 
best fit. The equation of the least squares line of best fit is

  149.7 0.26 .y x= +     

 Let us look at the results that we have obtained from the line of best fit in Figure 
 2.3 . The intercept in Figure  2.3  is 149.7, which is where the line of best fit crosses 
the run time axis. The slope of the line in Figure  2.3  is 0.26. Thus, we say that each 
additional unit to be produced is predicted to add 0.26 minutes to the run time. The 
intercept in the model has the following interpretation: for any production run, the 
average set up time is 149.7 minutes. 

  Estimating the variance of the random error term  

 Consider the linear regression model with constant variance given by (2.1) and 
(2.2). In this case,

  
0 1 ( 1,2,..., )i i iY x e i nb b= + + =    

 where the random error  e   i   has mean 0 and variance   s2  . We wish to estimate 
  s2 = Var(e)  . Notice that

  0 1( )iii ie x YY b b− + == – unknown regression line at xi.   



❖ LS estimates can be written using the sample 
correlation coefficient 
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 Since b0     and   b1   are unknown all we can do is estimate these errors by replacing   b0 
  and   b1   by their respective least squares estimates   b̂0   and   b̂1   giving the residuals
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 is an unbiased estimate of   s 2  . 
 Two points to note are: 

    1.      ̂ 0e =    (since   ˆ 0ie =∑    as the least squares estimates minimize   2ˆRSS ie= ∑    )  
   2.    The divisor in   S2   is   n – 2   since we have estimated two parameters, namely 

  b0   and   b1  .      

  2.2 Inferences About the Slope and the Intercept 

 In this section, we shall develop methods for finding confidence intervals 
and for performing hypothesis tests about the slope and the intercept of the 
regression line. 
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  Figure 2.3    A plot of the production data with the least squares line of best fit       
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   •  It can be thought of as a potential predictor of the  Y -variable  
 •  Its value can sometimes be chosen by the person undertaking the study    

 Simple linear regression is typically used to model the relationship between two 
variables  Y  and  X  so that given a specific value of  X , that is,  X  =  x , we can predict 
the value of  Y . Mathematically, the regression of a random variable  Y  on a random 
variable  X  is

  E(Y | X = x),   

 the expected value of  Y  when  X  takes the specific value  x . For example, if  X  = Day 
of the week and  Y  = Sales at a given company, then the regression of  Y  on  X  repre-
sents the mean (or average) sales on a given day. 

 The regression of  Y  on  X  is linear if
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  Figure 2.1    A scatter plot of the production data       

 Table 2.1    Production data (production.txt)  

 Case  Run time  Run size  Case  Run time  Run size 

  1  195  175  11  220  337 
  2  215  189  12  168  58 
  3  243  344  13  207  146 
  4  162  88  14  225  277 
  5  185  114  15  169  123 
  6  231  338  16  215  227 
  7  234  271  17  147  63 
  8  166  173  18  230  337 
  9  253  284  19  208  146 
 10  196  277  20  172  68 
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Estimating variance
❖ Linear regression model  

❖ The last term is random error (mean 0 and variance σ2) 

❖ The sum of residuals is zero. Why? 

❖ The unbiased estimate of σ2: 

❖ Divisor (n-2) is related to the sample size and the number of 
coefficients estimated. 
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Residual



Simple linear regression 
concept



Association/Correlation vs 
Causation  

❖ Causal interpretation: The statement “X causes Y” means that 
changing the value of X will change the distribution of Y.  

❖ When X causes Y, X and Y will be associated but the reverse is not true.  

❖ Association interpretation: change in the value of X is associated 
with changes in the value of Y 

❖ Association does not necessarily imply causation.  

❖ If the data are from a randomized study, then the causal 
interpretation is correct.  

❖ If the data are from a observational study, then the causal 
interpretation is NOT correct. 



Interpretation of LS 
estimates
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tion. Be sure to substitute association if you are looking at an observational study.
The general meaning of a slope coe�cient is the change in Y caused by a one-unit
increase in x. It is very important to know in what units x are measured, so that
the meaning of a one-unit increase can be clearly expressed. For the corn experi-
ment, the slope is the change in mean corn plant weight (in grams) caused by a one
mg increase in nitrogen added per pot. If a one-unit change is not substantively
meaningful, the e↵ect of a larger change should be used in the interpretation. For
the corn example we could say the a 10 mg increase in nitrogen added causes a
52.7 gram increase in plant weight on average. We can also interpret the CI for
�1 in the corn experiment by saying that we are 95% confident that the change in
mean plant weight caused by a 10 mg increase in nitrogen is 46.8 to 58.9 gm.

Be sure to pay attention to the sign of b1. If it is positive then b1 represents the
increase in outcome caused by each one-unit increase in the explanatory variable. If
b1 is negative, then each one-unit increase in the explanatory variable is associated
with a fall in outcome of magnitude equal to the absolute value of b1.

A significant p-value indicates that we should reject the null hypothesis that
�1 = 0. We can express this as evidence that plant weight is a↵ected by changes
in nitrogen added. If the null hypothesis is retained, we should express this as
having no good evidence that nitrogen added a↵ects plant weight. Particularly in
the case of when we retain the null hypothesis, the interpretation of the CI for �1

is better than simply relying on the general meaning of retain.

The interpretation of b1 is the change (increase or decrease depending
on the sign) in the average outcome when the explanatory variable
increases by one unit. This should always be stated in terms of the
actual variables of the study. Retention of the null hypothesis H0 : �1 =
0 indicates no evidence that a change in x is associated with (or causes
for a randomized experiment) a change in y. Rejection indicates that
changes in x cause changes in y (assuming a randomized experiment).
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first check the range of x values covered by the experimental data. If there is no
x data near zero, then the intercept is still needed for calculating ŷ and residual
values, but it should not be interpreted because it is an extrapolated value.

If there are x values near zero, then to interpret the intercept you must express
it in terms of the actual meanings of the outcome and explanatory variables. For
the example of this chapter, we would say that b0 (84.8) is the estimated corn plant
weight (in grams) when no nitrogen is added to the pots (which is the meaning of
x = 0). This point estimate is of limited value, because it does not express the
degree of uncertainty associated with it. So often it is better to use the CI for b0.
In this case we say that we are 95% confident that the mean weight for corn plants
with no added nitrogen is between 47 and 122 gm, which is quite a wide range. (It
would be quite misleading to report the mean no-nitrogen plant weight as 84.821
gm because it gives a false impression of high precision.)

After interpreting the estimate of b0 and it’s CI, you should consider whether
the null hypothesis, �0 = 0 makes scientific sense. For the corn example, the null
hypothesis is that the mean plant weight equals zero when no nitrogen is added.
Because it is unreasonable for plants to weigh nothing, we should stop here and not
interpret the p-value for the intercept. For another example, consider a regression
of weight gain in rats over a 6 week period as it relates to dose of an anabolic
steroid. Because we might be unsure whether the rats were initially at a stable
weight, it might make sense to test H0 : �0 = 0. If the null hypothesis is rejected
then we conclude that it is not true that the weight gain is zero when the dose is
zero (control group), so the initial weight was not a stable baseline weight.

Interpret the estimate, b0, only if there are data near zero and setting
the explanatory variable to zero makes scientific sense. The meaning
of b0 is the estimate of the mean outcome when x = 0, and should
always be stated in terms of the actual variables of the study. The p-
value for the intercept should be interpreted (with respect to retaining
or rejecting H0 : �0 = 0) only if both the equality and the inequality of
the mean outcome to zero when the explanatory variable is zero are
scientifically plausible.

For interpretation of a slope coe�cient, this section will assume that the setting
is a randomized experiment, and conclusions will be expressed in terms of causa-
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❖ We should check if these four assumptions hold to 
make inferences on the linear regression model. 

❖ We can assume X’s are non-random.
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  2.2.1  Assumptions Necessary in Order to Make Inferences 
About the Regression Model 

 Throughout this section we shall make the following assumptions: 

    1.     Y  is related to  x  by the simple linear regression model
  0 1 ( 1,..., )i i iY x e i nb b= + + =   , i.e.,   b b= = +0 1E( | )i iY X x x     

   2.    The errors   1 2, ,..., ne e e    are independent of each other  
   3.    The errors   1 2, ,..., ne e e    have a common variance   s 2    
   4.    The errors are normally distributed with a mean of 0 and variance   s 2  , that is, 

  2|  (~ 0, )e X N s        

 Methods for checking these four assumptions will be considered in Chapter 3. In 
addition, since the regression model is conditional on  X  we can assume that the 
values of the predictor variable,  x  1 ,  x  2 , …,  x   n   are known fixed constants.   

  2.2.2 Inferences About the Slope of the Regression Line 

 Recall from (2.4) that the least squares estimate of   b1   is given by 
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 We shall see that this version of   b̂1   will be used whenever we study its theoretical 
properties. 

 Under the above assumptions, we shall show in Section  2.7  that 
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❖ LS estimates are unbiased 

❖ It can be shown that
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 Note that in (2.7) the variance of the least squares slope estimate decreases as  SXX  
increases (i.e., as the variability in the  X ’s increases). This is an important fact to note 
if the experimenter has control over the choice of the values of the  X  variable. 

 Standardizing (2.8) gives 
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 If   s   were known then we could use a  Z  to test hypotheses and find confidence 
intervals for   b  1. When   s   is unknown (as is usually the case) replacing   s   by  S , the 
standard deviation of the residuals results in 
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b =    is the estimated standard error (se) of   b̂1  , which is given 

directly by R. In the production example the  X -variable is  RunSize  and so 
se  (b̂1) = 0.03714  . 

 It can be shown that under the above assumptions that  T  has a  t -distribution with 
 n  – 2 degrees of freedom, that is
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 Notice that the degrees of freedom satisfies the following formula 

degrees of freedom = sample size – number of mean parameters estimated.

 In this case we are estimating two such parameters, namely,   b0   and   b1  . 
 For  testing the hypothesis    b b= 0

0 1 1:H     the test statistic is 
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 R provides the value of  T  and the  p -value associated with testing   H0 : b1 = 0   against 
  1: 0AH b ≠    (i.e., for the choice   0

1 0b =   ). In the production example the  X -variable is 
 RunSize  and  T  = 6.98, which results in a  p -value less than 0.0001. 

 A   100(1–a)  %  confidence interval  for   b1  , the slope of the regression line, is 
given by 



❖ If a,b,c,d are constants and X and Y are random 
variables, then 

❖ By the assumptions, errors are independent 

❖ Mean of y and LS estimate of the slope is 
uncorrelated.

 

1̂β  and y  are uncorrelated: 
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Distribution of the intercept

❖ LS estimates are unbiased 

❖ It can be shown that 

β̂0 = y − β̂1x

E(β̂0 | X) = E(y | X)− E(β̂1 | X)x = E(β0 + β1x + e | X)− β1x = β0

Var(β̂0 | X) =Var(y − β̂1x | X) =
σ 2

n
+ x

2σ 2

SXX
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 where   t(a /   2, n – 2) is the   100(1– a /   2)th quantile of the  t -distribution with  n  – 2 
degrees of freedom. 

 In the production example the  X -variable is  RunSize  and   1 1
ˆ ˆ0.25924, se( )b b= =

  0.03714, t (0.025, 20–2 = 18) = 2.1009. Thus a 95%  confidence interval for   b1   is given by 

  (0.25924 2.1009 0.03714) (0.25924 0.07803) (0.181,0.337)± × = ± =     

  2.2.3 Inferences About the Intercept of the Regression Line 

 Recall from (2.3) that the least squares estimate of   b0   is given by
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 Under the assumptions given previously we shall show in Section  2.7  that 
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 Standardizing (2.11) gives 
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 If   s   were known then we could use  Z  to test hypotheses and find confidence inter-
vals for   b0  . When   s   is unknown (as is usually the case) replacing σ by S results in 
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 where se  
2

0
ˆ 1( ) xS n SXXb = +    is the estimated standard error of   b̂0  , which is 

given directly by R. In the production example the intercept is called  Intercept  and 
so   se(b̂0) = 8.32815  . 



❖ Covariance between LS estimates 

❖ The variances and covariance for the LS estimators all 
depend on the unknown σ 2. One needs to estimate this if 
we want to compute standard errors. 

❖ The variances of LS estimates decrease as the distribution 
of X becomes more spread out.  

❖ Thus, in a designed experiment greater precision is achieved 
using a wider range of X values. 

Cov(β̂0, β̂1 | X) = Cov(y, β̂1 | X)− xCov(β̂1, β̂1 | X)

= 0 − xVar(β̂1)

= −x
SXX

σ 2
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 Note that in (2.7) the variance of the least squares slope estimate decreases as  SXX  
increases (i.e., as the variability in the  X ’s increases). This is an important fact to note 
if the experimenter has control over the choice of the values of the  X  variable. 

 Standardizing (2.8) gives 
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 If   s   were known then we could use a  Z  to test hypotheses and find confidence 
intervals for   b  1. When   s   is unknown (as is usually the case) replacing   s   by  S , the 
standard deviation of the residuals results in 
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directly by R. In the production example the  X -variable is  RunSize  and so 
se  (b̂1) = 0.03714  . 

 It can be shown that under the above assumptions that  T  has a  t -distribution with 
 n  – 2 degrees of freedom, that is
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 Notice that the degrees of freedom satisfies the following formula 

degrees of freedom = sample size – number of mean parameters estimated.

 In this case we are estimating two such parameters, namely,   b0   and   b1  . 
 For  testing the hypothesis    b b= 0

0 1 1:H     the test statistic is 
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 R provides the value of  T  and the  p -value associated with testing   H0 : b1 = 0   against 
  1: 0AH b ≠    (i.e., for the choice   0

1 0b =   ). In the production example the  X -variable is 
 RunSize  and  T  = 6.98, which results in a  p -value less than 0.0001. 

 A   100(1–a)  %  confidence interval  for   b1  , the slope of the regression line, is 
given by 
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 Notice that the degrees of freedom satisfies the following formula 
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1 0b =   ). In the production example the  X -variable is 
 RunSize  and  T  = 6.98, which results in a  p -value less than 0.0001. 

 A   100(1–a)  %  confidence interval  for   b1  , the slope of the regression line, is 
given by 
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  Regression Output from R  

The least squares estimates for the production data were calculated using R, giving 
the following results:

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 149.74770 8.32815 17.98 6.00e-13 ***   
 RunSize 0.25924 0.03714 6.98 1.61e-06 ***   
 ---   
 Signif. codes:0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        

 Residual standard error: 16.25 on 18 degrees of freedom   
 Multiple R-Squared: 0.7302, Adjusted R-squared: 0.7152   
 F-statistic: 48.72 on 1 and 18 DF, p-value: 1.615e-06   

  The least squares line of best fit for the production data  

 Figure  2.3  shows a scatter plot of the production data with the least squares line of 
best fit. The equation of the least squares line of best fit is

  149.7 0.26 .y x= +     

 Let us look at the results that we have obtained from the line of best fit in Figure 
 2.3 . The intercept in Figure  2.3  is 149.7, which is where the line of best fit crosses 
the run time axis. The slope of the line in Figure  2.3  is 0.26. Thus, we say that each 
additional unit to be produced is predicted to add 0.26 minutes to the run time. The 
intercept in the model has the following interpretation: for any production run, the 
average set up time is 149.7 minutes. 

  Estimating the variance of the random error term  

 Consider the linear regression model with constant variance given by (2.1) and 
(2.2). In this case,

  
0 1 ( 1,2,..., )i i iY x e i nb b= + + =    

 where the random error  e   i   has mean 0 and variance   s2  . We wish to estimate 
  s2 = Var(e)  . Notice that

  0 1( )iii ie x YY b b− + == – unknown regression line at xi.   

Table of t-distribution

https://www.stat.tamu.edu/~lzhou/stat302/T-Table.pdf


Testing hypothesis on slope

❖ Consider testing hypotheses  

❖ At significance level α, reject the null if  

❖ What if you fail to reject the null? 

❖ Example: production data

H0 :β1 = β1
0
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T = β̂1

se(β1)
~ tn−2  when H0  is true.

T > t(α / 2,n − 2) p-value = 2 ⋅P(tn−2 > T ) <α
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 For  testing the hypothesis    0
0 0 0:H b b=    the test statistic is 
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 R provides the value of  T  and the  p -value associated with testing   0 0: 0H b =    
against        0: 0AH b !   . In the production example the intercept is called  Intercept  and 
  T = 17.98   which results in a  p -value < 0.0001. 

 A   100(1 – a )%    confidence interval  for   b0  , the intercept of the regression line, 
is given by 

  0 0 0 0
ˆ ˆ ˆ ˆ( ( 2, 2) se( ), ( /2 , 2)se( ))t n – t n –b a / b b a b− +    

 where   t(a / 2,n – 2)   is the   100(1–a / 2)  th quantile of the  t -distribution with  n  – 2 
degrees of freedom. 

 In the production example, 

  0 0
ˆ ˆ149.7477, se( ) 8.32815, (0.025,20 2 18) 2.1009tb b= = − = =   .

Thus a 95% confidence interval for   b0   is given by 

  (149.7477 2.1009 8.32815) (149.748 17.497) (132.3,167.2)± × = ± =    

  Regression Output from R: 95% confidence intervals 

      2.5% 97.5%   
 (Intercept) 132.251 167.244   
 RunSize 0.181   0.337     

  2.3 Confidence Intervals for the Population Regression Line  

 In this section we consider the problem of finding a confidence interval for the 
unknown population regression line at a given value of  X , which we shall denote by  x *. 
First, recall from (2.1) that the population regression line at  X  =  x * is given by 

  0 1E( | *) *Y X x xb b= = +    

 An estimator of this unknown quantity is the value of the estimated regression 
equation at  X  =  x *, namely, 

  0 1
ˆ ˆˆ* *y xb b= +    

 Under the assumptions stated previously, it can be shown that 

 0 1ˆ ˆE( *) E( | *) *y y X x xb b= = = +      (2.12)  



Inferences about the Intercept  

❖ Consider testing hypotheses  

❖ Example: production data

H0 :β0 = 0 vs HA :β0 ≠ 0

H0 :β0 = β0
0
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Distribution of the population 
regression line

❖ Let x* denote a certain X-value. The population 
regression line is 

❖ The estimator of this unknown conditional expectation is 

❖ It can be shown that 

E(Y | X = x*) = β0 + β1x
*

ŷ* = β̂0 + β̂1x
*
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Confidence interval for the 
population regression line

❖ A 100(1 – α)% confidence interval for the 
population regression line (mean response) at X = 
x*
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Estimation vs Prediction
❖ Estimation: to guess a function of parameters (non-

random quantities) 

❖ Prediction: to guess a function of actual data points  
(random quantities) 

❖ Confidence interval: interval estimation of a function 
of parameters 

❖ Prediction interval: interval predictions of a function 
of the actual data points



Distribution of predicted 
value of Y

Y * = β0 + β1x
* + e*

26 2 Simple Linear Regression

   2.     E(Y  |  X = x*), the value of the regression line at  X  =  x *, is entirely different from 
 Y *, a single value of  Y  when  X  =  x *. In particular,  Y * need not lie on the popula-
tion regression line.  

   3.    A  confidence interval  is always reported for a  parameter  (e.g.,   E(Y | X = x*)
= b0 + b1x*  ) and a  prediction interval  is reported for the value of a  random 
variable  (e.g.,  Y *).     

 We base our prediction of  Y  when  X  =  x * (that is of  Y *) on 

  0 1
ˆ ˆˆ* *y xb b= +    

 The error in our prediction is 

  0 1ˆ ˆ ˆ* * * * * E( | *) * *Y y x e y Y X x y eb b− = + + − = = − +    

 that is, the deviation between E(Y  |  X = x*) and ŷ* plus the random fluctuation 
  e*   (which represents the deviation of  Y * from E(Y | X = x*)). Thus the variability 
in the error for predicting a single value of  Y  will exceed the variability for estimating 
the expected value of  Y  (because of the random error  e *). 

 It can be shown that under the previously stated assumptions that 
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 A   100(1–a)%    prediction interval  for  Y *, the value of  Y  at  X  =  x *, is given by 
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 So that,
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 Result (2.14) follows from the fact that under assumption (4),   0
ˆ | Xb    is normally 

distributed as is       1
ˆ | Xb .

  2.7.4 Prediction Intervals for the Actual Value of  Y  

 We base our prediction of  Y  when  X  =  x * (that is of  Y *) on
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 that is, the deviation between   E( | *)Y X x=    and   ŷ*   plus the random fluctuation   e*   
(which represents the deviation of  Y * from   E( | *)Y X x=   ). 

 Under the assumptions stated previously, we shall derive (2.15), (2.16) and 
(2.17). First, we consider (2.15)
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 In considering (2.16), notice that   ŷ   is independent of  Y *, a future value of  Y . 
Thus,
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 Finally, (2.17) follows since both   ŷ   and  Y * are normally distributed.   
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 A   100(1–a)%    prediction interval  for  Y *, the value of  Y  at  X  =  x *, is given by 
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Deviation between E(Y | X = x*) and its estimate  
plus the random fluctuation in ei 



Prediction interval
❖ A 100(1–α)% prediction interval for Y*, the value of Y at X = x* 

❖ The prediction interval is wider than the confidence interval because the 
uncertainty of prediction is the uncertainty of LS estimates plus the 
uncertainty of the random error.  

❖ The two intervals have the same center. 

❖ The width of these intervals decreases if 

❖ x* gets close to the mean of X 

❖ n or α increases 

❖ RSS decreases
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Analysis of variance 
(ANOVA) 

28 2 Simple Linear Regression

 We can perform this test using the following  t -statistic 

  

b
b −
− ∼= 1

2

1

ˆ 0
 ˆse( )

nT t
   
when H0 is true.

 

 We next look at a different test statistic which can be used when there is more than 
one predictor variable, that is, in multiple regression. First, we introduce some 
terminology. 

 Define the total corrected sum of squares of the  Y ’s by 

  2SST ( )
n

i
i

SYY y y= = −∑    

 Recall that the residual sum of squares is given by 

  2ˆRSS ( )
n

i i
i

y y= −∑    

 Define the regression sum of squares (i.e., sum of squares explained by the regres-
sion model) by 

  2ˆSSreg ( )
n

i
i

y y= −∑    

 It is clear that SSreg is close to zero if for each  i,  ŷi is close to ȳ while SSreg is large 
if ŷi differs from ȳ for most values of  x . 

 We next look at the hypothetical situation in Figure  2.4  with just a single 
data point ( x   i  ,  y   i  ) shown along with the least squares regression line and the 
mean of  y  based on all  n  data points. It is apparent from Figure  2.4  that 
  ( ) ( )ˆ ˆ .i i i iy y y y y y− = − + −     
 Further, it can be shown that 

SST = SSreg + RSS
Total sample = Variability explained by + Unexplained (or error)
variability the model variability     

 See exercise 6 in Section  2.7  for details. 
 If 

  0 1Y x eb b= + +    and   b1 ≠ 0   

 then RSS should be “small” and SSreg should be “close” to SST. But how small is 
“small” and how close is “close”? 
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 We can perform this test using the following  t -statistic 
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 To test 

  H0 : b1 = 0   against   HA : b1 ≠ 0   

 we can use the test statistic 

  
SSreg /1

RSS / 2
 

 
 

( )
F

n
=

−
   

 since RSS has ( n  – 2) degrees of freedom and SSreg has 1 degree of freedom. 
 Under the assumption that   e1 , e2 ,..., en   are independent and normally distributed 

with mean 0 and variance   s2  , it can be shown that  F  has an  F  distribution with 1 
and  n  – 2 degrees of freedom when   H0   is true, that is,

  
1 2 

SSreg /1
RSS /(

 
2) ,n–FF

n
~=

−
   when   H0   is true 

 Form of test: reject   H0    at level a if ,1, 2nF Fa −>     (which can be obtained from table 
of the  F  distribution). However, all statistical packages report the corresponding 
 p -value. 

  Figure 2.4    Graphical depiction that   ( ) ( )− = − + −ˆ ˆi i i iy y y y y y          
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❖ Consider t-statistic for testing 

❖ Goodness-of-fit: Coefficient of determination (R2) 

❖ The proportion of the total sample variability in the Y’s explained by 
the regression model 

❖  
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   Notes: 

    1.    It can be shown that in the case of simple linear regression 1
2

1

ˆ 0 ~
ˆse( )

ntT
b

b
−

− 
=

    and   1 2 
SSreg /1

RSS /(
 

2) ,n–FF
n

~=
−

   are related via   F = T  2    

   2.      R2  , the coefficient of determination of the regression line, is defined as the pro-
portion of the total sample variability in the  Y ’s explained by the regression 
model, that is,

  
2 SSreg RSS

1
SST SST

R = = −
       

  The reason this quantity is called   R2   is that it is equal to the square of the correlation 
between  Y  and  X . It is arguably one of the most commonly misused statistics. 

  Regression Output from R  

 Analysis of Variance Table        
 Response: RunTime   
  Df Sum Sq Mean Sq F value Pr(>F)   
 RunSize   1 12868.4 12868.4 48.717 1.615e-06 ***   
 Residuals 18 4754.6 264.1   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1   

 Notice that the observed  F -value of 48.717 is just the square of the observed  t -value 
6.98 which can be found between Figures 2.2 and 2.3. We shall see in Chapter 5 
that Analysis of Variance overcomes the problems associated with multiple  t -tests 
which occur when there are many predictor variables.  

  2.6 Dummy Variable Regression  

 So far we have only considered situations in which the predictor or  X -variable is 
quantitative (i.e., takes numerical values). We next consider so-called  dummy vari-
able regression , which is used in its simplest form when a predictor is categorical 

 Source of 
variation 

 Degrees of 
freedom (df) 

 Sum of squares 
(SS) 

 Mean square 
(MS) 

 F 

 Regression  1  SSreg  SSreg/1 

   

SSreg /1
RSS / 2

 
 

 
( )

F
n

=
−   

 Residual   n   – 2  RSS  RSS/( n  – 2)   
 Total   n   – 1  SST     

 The usual way of setting out this test is to use an   Analysis of variance table  
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❖ It is left as an exercise to show that 

❖ Example: 

❖ Calculate SST and its DF 

❖ Calculate R2 

❖ Verify F=T2
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Analysis of Variance Table 
 
It is left as an exercise to show that 
 

SXXSYYxxyyRSS ii
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1
2

1
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Rearranging gives: 
 

RSSSXXSYY += 2
1̂β  

 
This decomposition provides the basis for ANOVA table: 
 
 
Source df SS MS=SS/df F 
Regression 1 SXXSSreg 2

1̂β=  
1

SSreg  F=
2σ̂

MSreg  

Residual n-2 RSS  
2

ˆ 2

−
=
n
RSSσ  

 

Total n-1 SYY    
 
 
The statistic F is used to test  
 
Null model:  0)|( β==xXYE    versus 
 
Full model:  xxXYE 10)|( ββ +==  
 
With just one regression variable it is equivalent to test 0: 10 =βH  
in the full model and it can be shown that F = t2. Under Gaussian 
error assumptions the null distribution is F on 1 and n-2 degrees of 
freedom 



Dummy variable regression

❖ So far, we have considered a quantitative predictor.  

❖ Now Consider a predictor is categorical with two 
values (e.g., gender)



❖ (Change-over time data) A large food processing center 
that needs to be able to switch from one type of package 
to another quickly to react to changes in order patterns.
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 In this case, 

T = –2.254.

 (This result can be found in the output in the column headed ‘ t  value’). The associ-
ated  p -value is given by 

  0

0.026
( 2.254 when is true) = 0.013

2
p value P T H− = < − =    

 as the two-sided   0- ( 2.254 when is true) 0.026.p value P T H= ≠ − =    
 This means that there is significant evidence of a reduction in the mean change-

over time for the new method. 

  Figure 2.5    A scatter plot and box plots of the change-over time data       
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 Table 2.2    Change-over time data (changeover_times.txt)  

 Method   Y , Change-over time   X , New 

 Existing  19  0 
 Existing  24  0 
 Existing  39  0 
 .  .  . 
 New  14  1 
 New  40  1 
 New  35  1 



One-sided alternative

❖ Consider testing 

❖ Reject H0 at significance level α if -2.254 < -t(α, n-2) 
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with two values (e.g., gender) rather than quantitative. The resulting regression 
models allow us to test for the difference between the means of two groups. We 
shall see in a later topic that the concept of a dummy variable can be extended to 
include problems involving more than two groups. 

  Using dummy variable regression to compare new and old methods  

 We shall consider the following example throughout this section. It is taken from 
Foster, Stine and Waterman (1997, pages 142–148). In this example, we consider 
a large food processing center that needs to be able to switch from one type of 
package to another quickly to react to changes in order patterns. Consultants have 
developed a new method for changing the production line and used it to produce 
a sample of 48 change-over times (in minutes). Also available is an independent 
sample of 72 change-over times (in minutes) for the existing method. These two 
sets of times can be found on book web site in the file called changeover_times.
txt. The first three and the last three rows of the data from this file are reproduced 
below in Table  2.2 . Plots of the data appear in Figure  2.5 .      

 We wish to develop an equation to model the relationship between  Y , the 
change-over time and  X , the dummy variable corresponding to New and hence test 
whether the mean change-over time is reduced using the new method. 

 We consider the simple linear regression model 

  0 1Y x eb b= + +    

 where  Y  = change-over time and  x  is the dummy variable (i.e.,  x  = 1 if the time corre-
sponds to the new change-over method and 0 if it corresponds to the existing method). 

  Regression Output from R  

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 17.8611 0.8905  20.058 <2e-16 ***   
 New -3.1736 1.4080 -2.254 0.0260 *   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        
 Residual standard error: 7.556 on 118 degrees of freedom   
 Multiple R-Squared: 0.04128, Adjusted R-squared: 0.03315   
 F-statistic: 5.081 on 1 and 118 DF, p-value: 0.02604   
 We can test whether there is significant reduction in the change-over time for the 

new method by testing the significance of the dummy variable, that is, we wish to 
test whether the coefficient of  x  is zero or less than zero, that is: 

  0 1: 0H b =    against   1: 0AH b <    

 We use the one-sided “<” alternative since we are interested in whether the new 
method has lead to a reduction in mean change-over time. The test statistic is 

  1
2 0

1

~
ˆ 0

 when is true 
)

 .ˆse(
nT t H

b
b −
−

=    
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new method by testing the significance of the dummy variable, that is, we wish to 
test whether the coefficient of  x  is zero or less than zero, that is: 

  0 1: 0H b =    against   1: 0AH b <    

 We use the one-sided “<” alternative since we are interested in whether the new 
method has lead to a reduction in mean change-over time. The test statistic is 
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with two values (e.g., gender) rather than quantitative. The resulting regression 
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sample of 72 change-over times (in minutes) for the existing method. These two 
sets of times can be found on book web site in the file called changeover_times.
txt. The first three and the last three rows of the data from this file are reproduced 
below in Table  2.2 . Plots of the data appear in Figure  2.5 .      
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change-over time and  X , the dummy variable corresponding to New and hence test 
whether the mean change-over time is reduced using the new method. 
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  0 1Y x eb b= + +    

 where  Y  = change-over time and  x  is the dummy variable (i.e.,  x  = 1 if the time corre-
sponds to the new change-over method and 0 if it corresponds to the existing method). 

  Regression Output from R  

 Coefficients:   
  Estimate Std. Error t value Pr(>|t|)   
 (Intercept) 17.8611 0.8905  20.058 <2e-16 ***   
 New -3.1736 1.4080 -2.254 0.0260 *   
 ---   
 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1        
 Residual standard error: 7.556 on 118 degrees of freedom   
 Multiple R-Squared: 0.04128, Adjusted R-squared: 0.03315   
 F-statistic: 5.081 on 1 and 118 DF, p-value: 0.02604   
 We can test whether there is significant reduction in the change-over time for the 

new method by testing the significance of the dummy variable, that is, we wish to 
test whether the coefficient of  x  is zero or less than zero, that is: 

  0 1: 0H b =    against   1: 0AH b <    

 We use the one-sided “<” alternative since we are interested in whether the new 
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 In this case, 

T = –2.254.

 (This result can be found in the output in the column headed ‘ t  value’). The associ-
ated  p -value is given by 

  0

0.026
( 2.254 when is true) = 0.013

2
p value P T H− = < − =    

 as the two-sided   0- ( 2.254 when is true) 0.026.p value P T H= ≠ − =    
 This means that there is significant evidence of a reduction in the mean change-

over time for the new method. 

  Figure 2.5    A scatter plot and box plots of the change-over time data       

0.0 0.2 0.4 0.6 0.8 1.0

5

15

25

35

5

15

25

35

5

15

25

35

Dummy Variable, New

C
ha

ng
e 

O
ve

r 
T

im
e

0 1

Dummy Variable, New

C
ha

ng
e 

O
ve

r 
T

im
e

Existing New

Method

C
ha

ng
e 

O
ve

r 
T

im
e

 Table 2.2    Change-over time data (changeover_times.txt)  

 Method   Y , Change-over time   X , New 

 Existing  19  0 
 Existing  24  0 
 Existing  39  0 
 .  .  . 
 New  14  1 
 New  40  1 
 New  35  1 



❖ Mean change-over time of the new method 

❖ Mean change-over time of the existing method 

❖ A 95% confidence interval for the reduction in 
mean change-over time due to the new method  
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 Next consider the group consisting of those times associated with the  new 
change-over method . For this group, the dummy variable,  x  is equal to 1. Thus, we 
can estimate the mean change-over time for the new method as: 

  17.8611 ( 3.1736) 1 14.6875 14.7 minutes+ − × = =    

 Next consider the group consisting of those times associated with the  existing 
change-over method . For this group, the dummy variable,  x  is equal to 0. Thus, we 
can estimate the mean change-over time for the new method as: 

17.8611 + (–3.1736) × 0 = 17.8611 = 17.9 minutes     

 The new change-over method produces a reduction in the mean change-over time 
of 3.2 min from 17.9 to 14.7 minutes (Notice that the reduction in the mean change-
over time for the new method is just the coefficient of the dummy variable.) This 
reduction is  statistically significant . 

 A 95% confidence interval for the reduction in mean change-over time due to 
the new method is given by 

  1
ˆ ˆ ˆ ˆ( ( /2, 2)se( ), ( /2, 2)se ( ))t n t n1 1 1b a b b a b− − + −    

 where   ( /2, 2)t na −    is the   100(1 2)a /−   th quantile of the  t -distribution with  n  – 2 
degrees of freedom. In this example the  X -variable is the dummy variable 
 New  and   1 13.1736, se( ) 1.4080, (0.025,120 2ˆ 118) 1. 803ˆ 9tb b= − = − = =   . Thus a 
95% confidence interval for   b1   (in minutes) is given by 

− ±1.9803 ×1.4080) = (−3.1736 ± = − −( 3.1736 2.7883) ( 5.96, 0.39).  

 Finally, the company should adopt the new method if a reduction of time of this size 
is of  practical significance .  

  2.7 Derivations of Results  

 In this section, we shall derive some results given earlier about the least squares 
estimates of the slope and the intercept as well as results about confidence intervals 
and prediction intervals. 

 Throughout this section we shall make the following assumptions: 

    1.     Y  is related to  x  by the simple linear regression model 
  

0 1 0 1( 1,..., ), . .,E( | )i i i i iY x e i n i e Y X x xb b b b= + + = = = +         

   2.    The errors   e1,e2,...,en   are independent of each other  
   3.    The errors   e1,e2,...,en   have a common variance   s2    
   4.    The errors are normally distributed with a mean of 0 and variance   s2  (especially 

when the sample size is small), that is,   2| (~ 0, )e X N s        
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